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The suggested unified approach is based on the consideration of the entire set of kinetic 
functions as some space. The analysis of this space provides four classes of kinetic functions, 
characterized by similar properties and close values of kinetic parameters. The solution of the 
inverse kinetic problem within the unified approach reduces to finding unambiguously the class 
of kinetic functions. 

A wide set of diverse kinetic functions is used, as a rule, to solve the inverse kinetic 
problem. The diversity of kinetic functions concerns both their physical meaning 
and the mathematical form for its expression. The absence of a uniform approach 
to describe the whole set of kinetic functions prohibits their objective choice for the 
description of particular processes in solid substances. Therefore, investigators 
often restrict their consideration to some class of kinetic functions containing the 
adjustable parameter (functions of the Avrami-Erofeev type, of the reaction order). 
Their main advantage consists in permitting study of the formal process 
characteristics (E and log A ), continuously changing as a function of the adjustable 
parameter. In this case the characteristics underlying the choice of the function 
giving the finest description of the process (correlation coefficient, residual sum of 
squares) change continuously. The shortcoming in describing the process by kinetic 
functions of one class is that the real 'best' kinetic function may enter another class. 
Further, there are some kinetic functions which do not contain the adjustable 
parameter (functions of diffusion processes, Mampel and Prout-Tompkins 
functions). 

The function may be chosen by sorting all possible kinetic functions, but it would 
be more reasonable to do this through the unified approach. By the unified 
approach, we understand a technique which would allow one to consider the kinetic 
functions by analysing their mathematical form rather than elaborating their 

John Wiley & Sons, Limited, Chichester 
Akad~miai Kiad6, Budapest 



250 VYAZOVK1N, LESNIKOVICH: SOME ASPECTS OF MATHEMATICAL STATISTICS 

physical meaning. Such an approach is quite admissible, as the kinetic functions in 
their essence are formalized descriptions of idealized chemical processes. It is clear 
that the possibility of combining any kinetic functions in a single system should be 
an integral property of the unified approach. This property will always be inherent 
to the space formed by the kinetic functions, irrespective of their number and form. 

This paper considers kinetic functions within the suggested unified approach, as 
well as its application to the solution of the inverse kinetic problem in the 
framework of nonisothermal kinetics. Mathematically, this requires finding a 
characteristic of the entire space of kinetic functions which may play the same role 
as the adjustable parameter does for some of their classes. 

The space of kinetic functions 

Let us consider some space containing all kinetic functions. Evidently, the 
dimension of a space determined by the number of orthogonal kinetic functions is 
much less than thenumber of all possible functions. In particular, the compensation 
effect (imaginary) or, in other words, the multicoUinearity of the kinetic functions 
indicates this fact. 

We shall now introduce in this space the operation of the scalar product [1]: 

at2 

c,j = (1)  

wherefi(~) andfj(~) are different kinetic functions, while ~1 and ~2 are the initial 
and final degrees of decomposition, 

In the case the i = j, we obtain the norm of kinetic function ~(a): 

at2 

ci = ( j  (2) 
0tl 

Taking account of (1) and (2), the angle between the kinetic functions may be 
estimated as: 

cos O~j = c~--L (3) 
CiCj 

Quantity (3) is a fundamental characteristic of the space of kinetic functions, 
since it determines the relationship between them. Its value ranges from 0 to 1, 
which corresponds to the change of the ratio of functions from absolute 
independence to perfect equivalence. This is the fundamental character of this 
quantity, which served as the basis to construct the required adjustable parameter. 

Below we shall consider a particular form of this parameter and its possible 
application to solution of the inverse kinetic problem. 
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The space of kinetic functions of the reaction order type 

Since the kinetic functions of  this class have the adjustable parameter, 
consideration of  this space within the unified approach is of  purely methodological 
importance. 

The values of  (3) were calculated for this space using both differentialf(~t) and the 
integral g(~) forms of  the kinetic functions. In calculating (1) and (2), it was 
assumed that ~1 = 0.01 and ct 2 = 0.5 and 0.9. The value of  the reaction order n 
varied from 0 to 2. The results are listed accordingly in Tables 1 and 2 for the 
differential and integral forms of  the kinetic functions. 

Table 1 Values of angles 0 between kinetic 
functionsf(a) = (1-  ~)" vs n and ~2 

0.5 

1.0 

1.5 

2.0 

0.5 

0.9 

0.5 

0.9 

0.5 

0.9 

0.5 

0.9 

~2 

n 

5.5 

14.7 

10.8 5.3 

25.2 10.8 

15.7 10.2 

32.8 18.8 

20.2 14.8 

38.3 24.8 

0 0.5 

5.0 

8.1 

9.5 4.6 

14.4 6.4 

1.0 1.5 

The main conclusions of  the analysis of  this space (Tables 1 and 2), which also 
seem to be valid for other spaces of  kinetic functions, are as follows: 

(i) increase of the interval ~ - ~2 leads to an increasing angle between the kinetic 
functions; 

(ii) the differential forms of  the kinetic functions yield high values of  the angles as 
compared to the integral ones. 

These conclusions may serve as a methodological basis to improve the 
conditionality of inverse kinetic problems. Evidently, the greater the angle between 
the functions, the greater the difference between them and the simpler their 
discrimination is. Thus, in the case of a formal kinetic analysis of  the process it is 
preferable to use wider intervals of  the degrees of  decomposition and the differential 
methods to estimate the kinetic parameters. 
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Table 2 Values of angles 0 between kinetic 
functions 

1- (1- ~)~-" 
g(~t) - vs n and ~2 

l - n  

0.5 

1.0 

1.5 

2.0 

0.5 
0.9 

0.5 
0.9 

0.5 
0.9 

0.5 
0.9 

1.8 
4.5 

3.8 
11.2 

5.9 
19.6 

8.1 
28.3 

2.0 
6.8 

4.1 2.0 
14.7 8.3 

6.2 4.3 
23.4 16.8 

0.5 1.0 

2.1 
8.9 

1.5 

The space being two-dimensional is one more important property. This 
statement can easily be verified, as for any three kinetic functions the sum of the 
angles formed by one function with the other two is equal to the angle between the 
extreme functions. 

Taking any function of this space as a basis, we may write, by virtue of the two- 
dimensional character: 

f/(00 ~ fo(Ct) cos 0 i (4) 

wherefo(~) is the basic kinetic function, and 0i is the angle between functionsf/(~) 
and fo(0t). 

With regard to (4), the main nonisothermal kinetic equation will assume the 
f o r m :  

d~t q e X p ( ~ T )  fo(~t) cos 0 , (5) 
dT 

From the statistical point of view, the solution to the inverse kinetic problem 
using linearized form (5) reduces to the search of a minimum residual sum of 
squares (6): 

k { d~j E;'~2 (6) 
s z ,~ ~ ~ln ~ - I n  (fo(Ctj)) - I n  (cos Oi) - I n  Ai + 

j=l q RTi  ] 
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The mathematical form of Eq. (6) shows that the s 2 dependence on In (cos 0i) is 
expressed by some convex function. The particular form of the extreme is stipulated 
by the existence of a solution to the corresponding normal equation (7), stemming 
from (6): 

(3s 2 
= 0 (7) 

In (cos 0) 

(iii) If the solution to (7) in the prescribed 0 interval does exist, the s 2 dependence 
on In (cos 0i) will have a minimum. If it does not, the dependence has a maximum. 

This is the third methodological conclusion which follows from the analysis of 
the two-dimensional space of reaction orders, and it is of special importance to 
analyse the space of kinetic functions of more complex structure. Further, Eq. (6) 
yields a particular form of a sought adjustable parameter (In (cos 0)) that may be 
applied to analyse any two-dimensional space. This property of the adjustable 
parameter enables one to develop a unified approach to the analysis of the entire 
space of kinetic functions as a set of some two-dimensional subspaces. 

Entire space of kinetic functions 

The considered entire space of kinetic functions contains 20 functions taken from 
[2]. The fact that such a space is indeed entire will become understandable from 
what follows. The values of (1) and (2) were calculated using the Simpson method 
[1] at ~t 1 = 0.0t and ct 2 = 0.9. The results are given in Table 3. 

Analysis of the angles formed by the kinetic functions provides four classes of 
functions in the entire space under consideration, each of the classes, being a two- 
dimensional subspace. 

1. The class of diffusion kinetic functions includes functions Nos 13 to 16. It is 
worth noting that the analysis assigns function No. 6 to this class, as it stands much 
closer to the diffusion functions than to the functions for the power law of nuclear 
growth. 

2. The class of kinetic functions of the general form ( 1 -  ct)P includes the 
functions of the Mampel type (No. 7), the contracting sphere (No. 19), and the 
contracting cylinder (No. 20). They also cover all the kinetic functions of the 
reaction order. 

3. The class of kinetic functions of the Avrami-Erofeev type includes functions 
Nos 8 to 11 and the Prout-Tompkins function No. 12. 

4. The class of kinetic functions of the general form rn~t" comprises the power-law 
nuclear growth functions Nos 1 to 3, and also the exponential law oxidation 
functions Nos 17 and 18, which are. completely equivalent within the unified 
approach. 
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Some functions, however, are intermediate between the above classes. For 
instance, the power-law growth function No. 4 is between classes 4 and 3, and 
function No. 5 between classes 1 and 3. 

The division of the entire space of kinetic functions into four sub-spaces or, in 
other words, combining the considered set of  kinetic functions into four classes 
relies upon the formal form of the functions, which can easily be seen from a 
comparison of the functions of one class. The close values of  the kinetic parameters 
and residual sums of squares obtained for the kinetic functions of one class indicate 
that such a combination is not arbitrary. Further, the dependences of the type 
E - I n  (cos 0) and log A -  In (cos 0) provide the compensation effects, which are 
different for each of the classes. Figure 1 shows the compensation effects for 

different classes of functions obtained by interpreting the model data (T ,  ~t, dd~) for 

the function (1 - ~t) L5 at E = 30 kcal/mol, log A = 15. In addition to the above 20 
functions, they include two functions with reaction order n = 2.0 and n = 1.5. 

50 

E 

30 

10 

I I 
-2.5 -2.0 -1.5 
In(cosO) 

20 < 

"L5 

o 

m ( x  e 

I J I - s  
-1.o -o.5 

Fig. 1 Compensat ion  effects of  types E -  In (cos 0) and log A - In (cos 0) for different classes of  kinetic 

functions 

Conclusion (iii) is supported by the dependence s z - In (cos 0) for the same model 
data in Fig. 2. It can easily be seen that the minimum here appears only for the class 
of kinetic functions of the general form (1 - ~t) p. As concerns the other classes, they 
can be ignored in this case, as the appropriate dependences s z - In (cos 0) have no 
minima at all. It should be noted that the values of In (cos 0) will be obtained with 
regard to the angles formed by each of the kinetic functions and the one giving 
minimum kinetic parameters. Otherwise, the corresponding dependences will have 
a fracture. 

As concerns the question of  how complete the space of  kinetic functions is, the 
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Fig. 2 Dependence s 2 on In (cos 0) for different classes of kinetic functions 

"discontinuity" between the class of diffusion kinetic functions and the functions 
(1 - ~t) p in Figs 1 and 2 may be eliminated by increasing p. Hence, the above four 
classes embrace all possible kinetic functions. 

Unified approach as applied to solution 
of the inverse kinetic problem 

It has already been seen that the suggested unified approach enables one to 
choose the class of kinetic functions containing the one which gives the best 
description of the process. In addition to the model data for the function (1 - ~)~.5, 
the model data for the kinetic functions of other classes were considered. In all 
cases, the classes including the "best" kinetic function were appropriately found by 
analysing the form and interposition ofs 2 vs In (cos 0). Analysis of the data [3] using 
the suggested approach allows the class of kinetic functions (1 -~)P to be chosen 
unambiguously. The authors [3] have also chosen the function of the reaction order 
entering this class. Their choice, however, based on the application of several 
calculation procedures pointing to the function of the reaction order as one of the 
best, is not strictly based statistically, as the significance of the difference between 
the "best" and other functions was not estimated. In this case, the reaction order 
function competed with the Avrami-Erofeev functions representing an individual 
class within the suggested unified approach, thereby stipulating, finally, the 
unambiguous choice of the class of (1 -  ~)P functions. 

Accordingly, in the solution of the inverse kinetic problem, the unified approach 
allows one to avoid ambiguity in choosing a class of kinetic functions. As concerns 
ambiguity due to the choice of a function inside some class, it does not disappear, as 
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inevitably follows from the experimental errors. In the case of the unified approach 
applied, such an ambiguity inside a class can easily be interpreted as due to 
experimental errors in the kinetic parameters. The latter can be determined by 
considering s a vs E and s 2 vs log A for the chosen class of kinetic functions. It is 
known that such dependences are represented by convex downward functions. The 
values of the kinetic parameters are therefore taken as their mathematical 
expectation. The confidence intervals of the kinetic parameters can be constructed 
by taking account of the Fischer distribution. To avoid intricate calculations, s z vs 
E and s a vs log A must be spproximated with polynomials. 

If the chosen class of kinetic functions contains the adjustable parameter, its 
value corresponding to the minimum may be given and its confidence intervals may 
be estimated by analogy with the kinetic parameters. If it does not, then the kinetic 
function giving the value of s z closest to the minimum may be regarded as an 
estimator. 

Conclusion 

1. The suggested approach for analysing kinetic functions provided their 
combination in four classes. The combining of kinetic functions in one class on the 
basis of a formal criterion may be explained hypothetically in two ways. First, it 
may be due to some imperfect kinetic functions (the mathematical form being 
inadequate for the physical content of the real process). It is evident that in this case 
inspection and change of the mathematical form in order to bring it into agreement 
with the physical content will provide a more correct and detailed classification of 
the processes under consideration. Secondly, it may point to some objective 
community of the analysed processes (the mathematical form being adequate for 
the physical content), which is not revealed either theoretically or experimentally 
yet. Hence, the studies in this direction must be of considerable interest. 

2. The suggested approach provides a new means of solving the inverse kinetic 
problem, by choosing a class rather than a function. The advantage lies in the 
unambiguity of the choice. In this case; the ambiguity appearing in the choice of a 
function inside a class is interpreted as an error in the kinetic parameters, which 
follows logically from the unity of the processes in one class. 
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Zusammenfassang - -  Die vorgeschlagene vereinheitlichte N/iherung geht davon aus, dab das gesamte 
System der kinetischen Gleichungen als Raum angesehen wird. Die Analyse dieses Raumes ergibt vier 
Klassen yon kine~ischen Funktionen, die durch/ibnliche Eigenschaften und geschlossene Werte der 
kinetischen Parameter charakterisiert sind. Die L6sung des inversen kinetischen Problems reduziert sich 
in der vereinheitlichten N/iherung aufdas eindeutige Auffinden der Klasse der kinetischen Funktionen. 

Pe31oMe - -  Flpe~araeMbi~ e~InHbl~ nogxon OCHOBaH Ha paCCMOTpeHHH Bcefi COBOKyI1HOCTn 
rnHeTnqecr~x qbynKIln,~ t a r  neKoroporo npocTpa~cTBa. AHa_an3 )/anHoro npocTpancTaa no3ao~eT 
O6~,e;1HnnTb Kl4rleTHqecKrle ~ynrnnn B qeTblpe ~3acca, xaparTepH3yrotunxc~ 6~IH3OCTblO CBOHCTB H 
3natlenH~ KI, nteTHtlecKHx llapaMeTpon, IlpttqeM pettlenne o6paTrlO~ KrIneTnqeCKOfi 3a,~laqH CBO~I,ITC~I I( 
Haxo~(~eHHIO K.aacca KHHeTHqeCKI4• dpyarr~rt~, KOTOpOe ocytueCTB-~eTC~ O~HO3HaqHO. 
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